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Abstract

The three-dimensional characterization of internal features, via metrics such as orientation, porosity, and connectivity, is important to a
wide variety of scientific questions. Many spatial and morphological metrics only can be measured accurately through direct in situ
three-dimensional observations of large (i.e., big enough to be statistically representative) volumes. For samples that lack material contrast
between phases, serial grinding and imaging—which relies solely on color and textural characteristics to differentiate features—is a viable
option for extracting such information. Here, we present the Grinding, Imaging, Reconstruction Instrument (GIRI), which automatically
serially grinds and photographs centimeter-scale samples at micron resolution. Although the technique is destructive, GIRI produces an
archival digital image stack. This digital image stack is run through a supervised machine-learning-based image processing technique
that quickly and accurately segments data into predefined classes. These classified data then can be loaded into three-dimensional visual-
ization software for measurement. We share three case studies to illustrate how GIRI can address questions with a significant morphological
component for which two-dimensional or small-volume three-dimensional measurements are inadequate. The analyzed metrics include:
the morphologies of objects and pores in a granular material, the bulk mineralogy of polyminerallic solids, and measurements of the internal
angles and symmetry of crystals.
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Introduction

The three-dimensional (3D) morphological (e.g., size and shape)
and spatial (e.g., orientation, connectivity, size or shape sorting,
and porosity) characteristics of a system encode a wealth of infor-
mation about internal processes and physical properties. As a
result, when measured accurately, 3D attributes are important
for a variety of scientific and industrial applications spanning a
wide range of spatial scales. Unfortunately, the acquisition of
3D data often is nontrivial. Certain recent advancements, such
as photogrammetry and/or laser scanning, have made it relatively
easy to measure external, visible features (e.g., Daneshmand et al.,
2018; Medina et al., 2020). However, in situ measurements of
internal, embedded elements (e.g., fossils in a rock, or interlocked
crystals that make up a solid) remain hard to obtain because it is
inherently challenging to isolate (and subsequently measure)
features of interest from their surrounding matrix. In cases
where individual elements easily are disaggregated, retaining

information about original spatial relationships may be difficult
or even impossible.

It is possible to use stereology—a technique in which 3D prop-
erties are estimated from measurements made on two-
dimensional (2D) sections by leveraging information or assump-
tions about underlying geometries (Stroeven & Hu, 2006)—to
determine indirectly certain properties, such as volume fraction
of constituent phases, area of surfaces, and size distributions
(DeHoff, 1983). However, such indirect methods (with or without
a priori knowledge) cannot effectively estimate a large range of
morphological attributes (e.g., the number, shape, and spatial dis-
tribution of features; Tipper, 1976; DeHoff, 1983). Additionally,
stereology is inappropriate when measurements must be made
without any geometric assumptions.

Today, tomographic imaging, or the acquisition of sections
using either sound, light, X-ray, or other measurable electromag-
netic property, provides the best opportunity to produce and ana-
lyze 3D data. At the micron-to-centimeter scale, there are two
dominant tomographic imaging techniques: (a) X-ray computed
tomography (X-ray CT) and (b) mechanical serial sectioning
(Fig. 1). X-ray CT relies on the inversion of attenuated X-rays
in order to produce 3D reconstructions. This technique is nonde-
structive, but it requires a density and/or phase contrast between
features for differentiation. Serial sectioning is accomplished by
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mechanically separating (i.e, by slicing or grinding) and optically
recording individual sections from a sample. Although serial sec-
tioning is a destructive technique, it has the benefit of utilizing
direct observations of color and texture for discrimination. Both
techniques have the added drawback of producing large amounts
of data—with each sample dataset being hundreds of gigabytes to
several terabytes in size—that are computationally challenging to
segment (i.e., to identify and isolate features of interest).

Given the value of 3D data, all tomographic imaging tech-
niques are indispensable and often complementary. For example,
X-ray CT is an obvious choice in situations where destruction
must be avoided, while optical imagery made with mechanical
sectioning is ideal for samples with little to no material or density
contrast. In this paper, we focus on serial sectioning as a tool for
producing high resolution, large-volume reconstructions, with the
intent of acquiring quantitative 3D metrics of samples at a scale
and fidelity that cannot be attained with other, existing tech-
niques. To that end, we present a new, automated methodology
for serially grinding and imaging. In addition to addressing
many shortcomings of previous methods, our technique dramat-
ically increases the scale of sample volumes that can be probed at
micron resolution.

The Grinding, Imaging, and Reconstruction Instrument
(GIRI) at Princeton University is a one-of-a-kind apparatus that
produces micron-scale data over a decimeter-scale field of view
with minimal operator intervention. GIRI comprises a
Computer Numerical Control (CNC) Mitsui MSG-818PC-NC
surface grinder that is retrofitted with a misting apparatus, retract-
able rollers, and an imaging stage made up of lighting and a
reprographic camera. To demonstrate how data from GIRI can
be turned into 3D reconstructions, we present a neural network-
based image processing pipeline that can, with some user input,
rapidly and accurately segment images. We demonstrate GIRI’s
effectiveness in a series of case studies with novel results.

Background

In 1903, William Sollas, a professor of geology and paleontology
at the University of Oxford, presented a paper to the Proceedings
of the Royal Society in which he described a newly invented
device that enabled researchers to study fossils using serially pol-
ished surfaces (Sollas, 1904). The apparatus comprised a mechan-
ical chuck designed to hold a sample and a rotating glass disk that
was continuously fed with a combination of water and abrasive
media. By incrementally lowering a mounted sample onto the
glass disc, a user could both remove material and polish the sam-
ple face via mechanical grinding. The user then would either pho-
tograph or trace the freshly polished face for later serial
reconstruction and analysis. Spacing between successive sections
was reported to be as small as 0.25 mm (Sollas, 1904). Until
Sollas’ invention, 3D internal analysis of fossils largely had eluded
paleontologists. Unlike biologists, who were able to slice speci-
mens into a series of parallel thin (transparent) sections, scientists
that studied fossils had to rely on mechanical processes that, at
best, required 1 mm spacing between sections (Sollas, 1904).

Sollas’ design has been modified numerous times throughout
the 20th and 21st centuries (Jefferies et al., 1962; Keyes, 1962;
Hendry et al., 1963; Sandy, 1989; Alkemper and Voorhees,
2001; Sutton et al., 2001; Watters & Grotzinger, 2001; Maloof
et al., 2010; Pascual-Cebrian et al., 2013), including, within 10
years of his 1904 presentation, by Sollas and his daughter
Igerna (Sollas & Sollas, 1914). Each iteration of the method has
had to contend with the same set of operational concerns: (a) res-
olution, (b) field of view, (c) registration, (d) operation time and
effort, and (e) sample destruction. Resolution determines the
smallest feature that can be captured accurately; in serial grinding,
resolution refers to both the spacing between successive slices and
the sampling interval on freshly ground surfaces. Field of view
corresponds to how much surface area is captured by imaging
or recording; depending on the capture technique, optical distor-
tion may limit how much of the field of view is dimensionally
accurate (in both two and three dimensions). Registration
describes how slices are aligned; accurate registration is required
to avoid spatial distortion in the final reconstruction. Operation
time and effort refers to the processes of sample preparation,
grinding, and imaging. Finally, sample destruction is a fundamen-
tal characteristic of the technique, meaning that serial grinding
may not be suitable for especially rare or precious samples.

Often, these operational concerns are interconnected. For
example, an increase in sampling resolution (whether accom-
plished by decreasing the spacing between slices or by altering
the imaging setup) can lead to a decrease in the field of view
and/or an increase in sample processing time. Some, though
not all, factors can be addressed by creative engineering. For
instance, to align successive slices, Sollas proposed either shaping
samples into parallelopipedons or, for very large objects, inserting
cylinders of graphite into pre-drilled holes to serve as registration
marks (Sollas, 1904).

A relatively recent commercial example of serial grinding is an
automated system known as Robo-Met.3D, which was first
described by Spowart et al. (2003) and has been sold since 2006.
This device utilizes robotic elements for grinding and polishing
and an inverted microscope for imaging (Ivanoff & Madison,
2020). Among other applications, Robo-Met.3D has been used
to describe microstructures in metals and alloys, identify flaws
in additively manufactured parts, and quantify fibers in composite
materials. Certain instances of the device have been augmented to

Fig. 1. Resolution versus volume analyzed of various tomographic techniques. GIRI
expands the size of mechanically sectioned samples that can be imaged at high res-
olution (figure adapted from Cantoni & Holzer, 2014). Both axes are log-scale and
equivalent SI units are in small italics.
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provide multimodal analyses, such as the inclusion of a scanning
electron microscope (SEM) to produce backscattered-electron
(BSE) and electron backscatter diffraction (EBSD) imagery
(Chapman et al., 2019). Robo-Met.3D is optimized for small vol-
ume reconstructions (e.g., <1 mm3 up to <27 cm3, as according to
Ivanoff & Madison, 2020) and, for sufficiently large samples,
relies on photo montages made up of tens to hundreds of
image tiles that have been stitched together.

Regardless of how serial data are collected, those data must be
processed and reduced before they can be analyzed. Data take the
form of an evenly spaced grid of cells known, in 2D optical imag-
ery, as pixels (Figs. 2a, 2b). Each pixel contains a numerical value
(multispectral images, such as true color photographs, often con-
tain multiple layers, or channels, of pixels, with the final rendered
output being some combination of three channels). These values
can be differentiated using a process known as segmentation

Fig. 2. Image processing considerations. (a) True color image of a calcified fragment of Cloudina, an enigmatic Precambrian fossil (Mehra & Maloof, 2018), located
within a reddish carbonate matrix. The first zoomed-in region demonstrates that such images comprise a grid of pixels; the second zoomed-in region illustrates
how each pixel is comprised of multiple channel values (here, red, green, and blue, or R, G, and B, respectively). The white outline illustrates a target segmentation
of the image: a clear separation of two “classes” (i.e., fragment and matrix). (b) Comparative histogram of R, G, and B channel values of the two classes defined in
a. Each channel in a digital image contains numerical values ranging from 0 to 2n. Here, each channel has a value between 0 and 216. The solid lines represent the
R, G, and B values of the matrix, while the dashed lines represent the R, G, and B values of the fragment (i.e., those pixels bounded by the white outline). Note the
overlap between the two classes. Such overlap makes image segmentation challenging. (c) Histogram of the first principal component (PC1) of the image in a. The
dashed line illustrates a “threshold value.” Pixels in the PC1 image with values greater than the threshold are classified as fragment, while pixels with values less
than (or equal to) the threshold are classified as matrix. (d) Image showing the output of thresholding on the PC1 image. A zoomed-in region—which should be
classified as only matrix—illustrates the sort of “speckling” that occurs when a naive threshold is applied to classes that have overlapping values. (e) Example of
superpixels generated from the image in a. The zoomed-in region demonstrates how such operations enable the calculations of neighborhood statistics (in this
case, of the mean and standard deviation of R, G, and B values of each superpixel) for further image processing. (f) Probability map output from a hidden layer
neural network, where each superpixel shown in e is assigned a value between 0 and 1, thereby indicating the likelihood that it is part of the fragment class. The
network leverages the neighborhood statistics calculated for each superpixel. (g) Final segmentation output, produced using the probability map shown in f. Each
superpixel is assigned the class with the highest probability value, resulting in an image that approaches the target segmentation outlined in a. (h) Diagram illus-
trating how slices are turned into 3D models. (i) A 3D tube. (ii) One planar cross section through the tube. The square grid depicts discrete sampling of the section.
Each square can be considered to be a pixel. (iii) The section shown in ii is given a thickness corresponding to the vertical sampling interval. Each extruded pixel is
referred to as a voxel. (iv) When multiple sections are stacked and each is given a thickness, a 3D model is formed. (v) Decreased vertical spacing between suc-
cessive slices improves the fidelity of the resulting 3D model. (vi) Increasing the planar resolution also increases the model’s accuracy with respect to the original
form. Scalebar in a depicts 0.5 cm.
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(Figs. 2c, 2d), in which each pixel is assigned to a predefined class
(i.e., semantic segmentation) and objects of interest are identified
and separated (i.e., instance segmentation). The ultimate goal of
segmentation (semantic and/or instance) is to clearly delineate
features of interest from their surroundings, thereby streamlining
quantitative analyses. In its simplest form, segmentation involves
careful manual tracing of features based on visual differences,
which is a process that, while effective, is both time-consuming
and prone to operator bias. More sophisticated segmentation
methods involve computer algorithms that classify on the basis
of numerical values. Simple algorithmic implementations of
semantic segmentation, such as thresholding or k-means, operate
on individual pixels. However, with increased textural variability
resulting from high resolution imagery and/or spectral overlap
between desired classes (Figs. 2c, 2d), methods that take into
account surrounding pixel values are advisable. Such
neighborhood-based techniques can provide additional contex-
tual information (e.g., texture) for use in semantic segmentation,
and, in turn, compensate for local heterogeneities (Figs. 2d–2g).
To identify individual objects within an image, instance segmen-
tation often relies on mathematical morphological operators (e.g.,
dilation or erosion) and connectivity (i.e., which pixels of a given
class are touching one another). Recently, researchers have intro-
duced machine-learning techniques that combine semantic and
instance segmentation into a single, automated pipeline (e.g.,
Kirillov et al., 2019). For a more comprehensive introduction to
image segmentation, the reader is referred to Pal & Pal (1993).

Following segmentation, 2D slice data must be converted to a
composite 3D volume for measurement. In his 1903 paper, Sollas
described how a layer of beeswax—with a thickness corresponding
to the sampling interval—was laid onto a slice and then cut away
to match the sectional contours of features. A complete 3D wax
model could be built by stacking successive layers together
(Sollas, 1904). Today, such a process is undertaken digitally: the
slices are loaded into software and assigned 3D coordinates that
correspond to their relative real-world positions. To produce a
volume, each section is given a thickness that corresponds to
the spacing between two slices (Fig. 2h). The new, 3D pixels are
referred to as volumetric pixels, or voxels.

Methodology

Grinding, Imaging, and Reconstruction Instrument (GIRI)

GIRI is located in a laboratory designed to maximize operational
accuracy. The grinder is set on an isolated concrete slab that
dampens outside vibration. The temperature is kept constant at
19.8 ± 1.5°C in order to limit the expansion or contraction of
machine elements. A dehumidifier is programmed to keep the rel-
ative humidity at 35% to inhibit rust formation. The laboratory is
equipped with both dust and mist collectors and is kept at positive
pressure to keep contaminants out.

Surface grinding is accomplished using a Mitsui
MSG-818PC-NC CNC surface grinder (Fig. 3). At its core, the
Mitsui MSG-818PC-NC comprises a sample-bearing table
(Fig. 3a, 2) along with a grinding wheel (Fig. 3a, 3) attached to
a variable speed (i.e., 0–6,000 revolutions per minute) spindle.
The table moves both longitudinally and transversely while the
spindle moves vertically (perhaps counterintuitively, the machine
axes for these movements are X, Z, and Y, respectively). Both the
speed and step size of movement in all three axes can be set inde-
pendently and the Mitsui is capable of moving in 1 μm (0.001

mm) increments in any direction. Validation experiments reveal
that both the longitudinal and vertical axes are repeatable and
precise to within 2 μm (Figs. 4a–4c). The Mitsui
MSG-818PC-NC CNC is controlled via Quickset, a proprietary
software that runs on an attached Windows computer (Fig. 3a,
4), and can be operated either manually or using G-code, a
numerical control language (Kramer et al., 2000). As part of the
G-code, dedicated “M-codes” provide the ability to programmat-
ically retrieve machine data, monitor inputs, and switch output
relays.

Samples are ground using either diamond, silicon carbide, or
aluminum oxide wheels of varying grit size. The material proper-
ties of a sample, such as hardness, porosity, and/or friability, dic-
tate the selection of wheel material, grit size, spindle speed, and
table speed, and many of these grinding parameters have been
derived empirically using trial and error. For instance, carbonate
rocks—especially those with large lithic grains that are liable to be
plucked and drawn over the surface of a sample during grinding—
may benefit from the use of aluminum oxide wheels as opposed to
the 220–400 grit diamond wheels used for mineralogically hard
samples (e.g., granites). At the same time, aluminum oxide wheels
tend to wear away faster than diamond wheels, a property that
must be accounted for while grinding. To improve surface finish,
wheels are manually balanced prior to mounting onto the grinder.
Periodically, wheels are trued and dressed, using a brake-
controlled truing device for diamond wheels and a single point
diamond for silicon carbide and aluminum oxide wheels.

To increase wheel life and improve surface finish, a coolant
mixture made up of a water-based synthetic fluid (e.g.,
Astrogrind A) and deionized water, is directed across both
wheel and sample during grinding. The coolant, which is held
in a 49.2 L tank (Fig. 3a, 5), is captured and recycled through
10 μm filter media. The filter media comes spooled on a roll
(Fig. 3a, 6), which is mechanically unwound and incrementally
advanced while the grinder is in operation. As both evaporation
and accumulating fine particulate matter slowly alter composition,
the depth, pH, hardness, and alkalinity of the coolant are recorded
daily and, if necessary, are adjusted by introducing new, dilute
coolant.

The Mitsui MSG-818PC-NC is retrofitted with a misting appa-
ratus comprising a 7.5 L holding tank and four, custom-made,
independently adjustable combination air and liquid nozzles
(Fig. 3a, 7, 8). The misting fluid is made up of a mixture of
water soluble oil (e.g., Rustlick WS-11) and deionized water.
When actuated, the misting fluid is fed from the holding tank
into each nozzle, where it is combined with pressurized air and
subsequently atomized over the freshly ground surface of a sam-
ple. Misting serves to improve image quality and reduce the
appearance of grinder marks (when present). As with other
GIRI parameters, the rate and direction of the mist are dictated
by specific material properties of a sample. Typically, porous sam-
ples, which tend to quickly soak up residual coolant, and larger
(i.e., with transverse dimensions exceeding 10 cm) samples,
which may undergo uneven drying, require an application of
mist, while more impermeable and/or smaller samples do not.
Regardless of whether or not misting is employed, excess liquid
on the sample surface can negatively impact imaging quality.
To address this issue, a retractable roller, which removes any
pooled liquid, is attached to the Mitsui MSG-818PC-NC spindle
housing (Fig. 3a, 9). The roller, which is made of medium hard
(60A durometer) silicone rubber, measures 1.9 cm in diameter,
is 15.24 cm long, and is set between two spring-loaded armatures.
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An imaging stage is mounted on a vertical rail that is bolted to
the table of the Mitsui MSG-818PC-NC (Fig. 3a, 10). The vertical
rail moves with the table along the X (transverse) axis.
Additionally, the stage is mechanically linked to the spindle hous-
ing and, as the grinding wheel is raised or lowered, moves accord-
ingly. To ensure perfect registration between sections, the table is

returned to the same Z (longitudinal) coordinate before imaging
(Fig. 4b). The imaging stage is made up of two horizontal arms
for lighting and a height-adjustable mount for a reprographic
camera system (Fig. 3a, 11, 12). Both the lighting and camera sys-
tem can be upgraded independently of the MSG-818PC-NC,
enabling GIRI to take advantage of future advances, including,

Fig. 3. GIRI elements. (a) An annotated drawing of various elements of GIRI, including: (1) Mitsui MSG-818PC-NC surface grinder; (2) table; (3) grinding wheel; (4)
attached Windows computer; (5) coolant holding tank; (6) paper filter roll; (7) misting fluid holding tank; (8) nozzles; (9) retractable roller; (10) vertical rail; (11) arm
to hold light(s); (12) reprographic camera system; (13) light; (14) sample, mounted onto a steel plate; and (15) magnetic chuck. Red lines denote retrofitted com-
ponents. (b) An image of the grinding lab at Princeton University.
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but not limited to, improved optics, higher spatial or spectral res-
olution data capture, and/or nonoptical fluorescence (e.g.,
Manzuk et al., 2022). Typically, lighting is provided by two
Lowel Blender adjustable LED lamps (Fig. 3a, 13). The lamps
are fitted with polarizing film inserts, which help reduce glare.
To leverage sample response to different wavelengths of illumina-
tion, multiple Smart Vision LED Brick Lights, each emitting a
specific wavelength of light, can be utilized instead (e.g.,
Manzuk et al., 2022). In such instances, each light is actuated
independently via serial communication and multiple photo-
graphs (each with exposure times tailored to the specific lighting

conditions) are captured (Manzuk et al., 2022). The camera sys-
tem is a Digital Transitions RCam. The RCam is equipped with
an 80 megapixel Phase One digital back that has a camera sensor
measuring 4.04 × 5.37 cm and comprising pixels that are each
5.2 × 5.2 μm in size. If utilizing multiple wavelengths of light,
the RCam instead is equipped with an achromatic 150 megapixel
Phase One digital back, which has a camera sensor measuring
4.04 × 5.37 cm and comprising pixels that are each 3.76 × 3.76
μm in size (Manzuk et al., 2022). Lenses are coupled to the digital
back with a Schneider Kreuznach electronic shutter that is con-
trolled using serial commands delivered over USB. The RCam

Fig. 4. Longitudinal and vertical axis validation experiments. (a) Left: Photograph of an Edmund Optics 50 × 50 mm dot pattern grid image target, where each circle
has a diameter of 125 μm. Right: Plot depicting the measured distance between nearest dots as a function of distance from the center of the image. The absence of
a trend indicates that the imaging system exhibits negligible distortion. (b) The horizontal positioning of features changes less than one pixel radius over the course
of 100 grind cycles. The image target was repeatedly moved out of, then into, imaging position, simulating the table movements associated with each grind cycle.
1,000 circles were identified and tracked across each image. Left, the difference between the center location of each circle between successive images. This plot
shows that the MSG-818PC-NC has sub-pixel precision. Right, the difference between the center location of each circle between the first and last image. This plot
illustrates that there is no long-term horizontal drift associated with table positioning. (c) Plot showing the difference, in microns, between the prescribed and
measured depths of ten steps ground into a single sample (in green and red), along with the results of a simple repeatability experiment, in which the same
point on the sample was measured multiple times (termed the “zero measure”; in yellow, with numbers representing multiples of the same value). The depth
of each step was measured with a Mitutoyo Absolute Digimatic depth gauge, which has a resolution of 1.27 μm. To explore the repeatability of the gauge, a single
point on the ground surface was selected and remeasured a total of 27 times (standard deviation of 1.10 μm). Each step twice was measured in three locations: the
left edge, center, and right edge. The average difference across all measures is 0.80 μm. Inset, on the left, a drawing depicting the 10 steps (each 1.5 mm deep)
ground into the sample; on the right, a diagram showing how the locations of measurements are arrayed in the plot. Note that darker shades of green indicate
multiple measurements with the same value. Scalebar in a depicts 0.1 cm.
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can be fitted with different extension tubes to change the distance
from the sensor to lens, enabling the system to utilize multiple
focal lengths. Lenses are equipped with a circular polarizing filter
to reduce glare and improve image quality. Appropriate working
distance for each lens is achieved by moving the camera system up
and down a track on the vertical rail. 1:1 macro imaging (corre-
sponding to a resolution of 5.2 μm per pixel with a 4.04 × 5.37
cm field of view for the 80 megapixel back and a resolution of
3.76 μm per pixel with the same field of view for the 150 mega-
pixel back) can be realized using a 120 mm Schneider Kreuznach
macro lens, which exhibits negligible distortion from edge to edge
(Fig. 4a). Larger fields of view, at the expense of resolution, can be
achieved using lenses with shorter focal lengths (e.g., the 72 mm
Schneider Kreuznach has a 18.9 × 14.2 cm field of view, with a

per-pixel resolution of 18.2 μm on the 80 megapixel digital
back). Alternatively, because of the Mitsui’s sub-pixel longitudinal
precision (Fig. 4b), as well as the distortion-free nature of the
Schneider Kreuznach optics (Fig. 4a, inset), samples can be mosa-
icked and combined to produce large field of view images. The
largest imageable area is 26 × 20 cm, while the maximum thick-
ness of a sample is 21.5 cm (a limit dictated by the travel extent
of the Mitusi’s vertical axis).

An Allen Bradley Micro 830 programmable logic controller
(PLC) serves as an intermediate interface between the Mitsui
MSG-818PC-NC and a control computer that is located in an
adjacent room. Two outputs on the PLC are wired to two inputs
on the Mitsui MSG-818PC-NC; conversely, a single input on the
PLC is wired to an output on the grinder (Fig. 5). In turn, the PLC

Fig. 5. GIRI schematic. (a) Simplified schematic showing connections between the Mitsui MSG-818PC-NC surface grinder, an Allen Bradley Micro 830 PLC, and a
control computer. Italic text refers to operational commands. Arrows indicate the direction of communication. Red lines represent bidirectional data exchange.
(b) A table of movement specifications for the Mitsui MSG-818PC-NC. The asterisk refers to the fact that the maximum vertical travel is dependent on the presence
of the magnetic chuck (the backslash indicates the range of travel with and without the chuck, respectively).
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is wired to the control computer using a RS232 serial-to-USB
connection. The PLC also is connected to a combined tempera-
ture and humidity sensor that tracks both parameters over time
to ensure that they stay within an acceptable range of values.
Furthermore, an acoustic emission grinding sensor (Schmitt
Industries SB5560), which can be used to ensure that a consistent
amount of material is removed from each cycle, is wired to the
PLC (Fig. 5). The data from these sensors are timestamped, stored
on the control computer, and regularly backed up to a server on
the local network. Via the timestamps, the data can be cross-
referenced and used to troubleshoot any issues with the grinding
process (e.g., a drop in image quality).

A collection of custom Matlab scripts allow the control com-
puter to connect and communicate with the PLC, and, in turn,
directly interface with the Mitsui MSG-818PC-NC and any asso-
ciated sensors. Through the Matlab scripts, an operator can: (a)
begin a grind cycle, (b) pause and/or resume operation, (c) receive
a command to take an image, and (d) activate and/or read from
various sensors connected to the PLC. All serial communications,
whether sent to or received from the PLC, are archived in digital
logs.

Sample Preparation

First, a sample is cut down to size with a circular rock saw. If nec-
essary, the cut-plane orientation, relative to the 3D-geographic
orientation of the original sample, is recorded for later reference.
Samples that are especially porous and/or friable are vacuum
impregnated with epoxy (e.g., Fig. 9d). The sample then is affixed,
flat-face down, to a 0.625-cm-thick ground steel plate using two-
part epoxy (such as Devcon Two-Ton epoxy adhesive). Although
the epoxy begins to harden within five minutes, the assembly is
left to cure for 24 h so as to achieve maximum bond strength
(Fig. 6a, steps 1 and 2).

The steel plate is placed on a manually actuated magnetic
chuck (Walker Ceramax 8 × 18; workholding surface dimensions:
20.3 × 45.7 cm; Fig. 3a, 14, 15), which is semi-permanently affixed
to the grinder table. The top of the sample then is ground flat by
plunge grinding in order to provide an area of adequate flatness
and finish for focusing (Fig. 6a, steps 3 and 4).

Camera focus is verified utilizing an iterative procedure. First,
Capture One, a software package designed specifically for the
Phase One digital back, is used to put the camera into “live
view” mode. Next, within the software, three regions on the flat-
tened portion of the sample are identified as “focus areas” for
evaluation. For each “focus area,” Capture One uses a proprietary
algorithm to produce a graphical output (in the form of a hori-
zontal bar) that visually indicates how well-focused the region
is. A fine adjustment screw on the imaging stage—which moves
the camera up or down 1/32′′ per revolution—then is used to
change the camera height relative to the sample, with the intent
of maximizing the focus measure for all selected “focus areas.”
In practice, the Capture One focus metric maintains its maximum
value over a range of approximately two revolutions of the adjust-
ment screw. To dial in the focus at a finer scale, a set of images is
captured at 1/4 revolution increments within this two revolution
range. The optimal camera height then is determined to be the
position at which the image gradient magnitude is maximized.
Finally, a test shot is taken to verify visually that the flattened por-
tion of the sample is in focus.

Serial Grinding and Image Acquisition

Several variables are entered into a pre-written G-Code procedure
before beginning a grind cycle (Figs. 6a, step 5 and 6b). These var-
iables are: the desired number of grinds (i.e., number of slices),
the step size (movement along the Y-axis, in inches), the trans-
verse feed rate (movement along the X-axis, in inches per
minute), the longitudinal, reciprocating, table speed (movement
along the Z-axis, in inches per minute), and the wheel revolution
speed (in revolutions per minute). Separately, a custom Matlab
script that interfaces with the shutter controller via serial commu-
nication is used to set an initial shutter speed and aperture for the
lens. If required, combinations of shutter speed and aperture for
multiple exposures (e.g., under different wavelengths of light)
also are input at this time. As previously noted, the value for
each variable is derived empirically and depends largely on the
material properties of the sample being processed. For instance,
the typical rotational wheel speed is 3,000 RPM, but this value
often is reduced for friable materials. Likewise, while the Mitsui
MSG-818PC-NC is capable of moving vertically in 1 μm incre-
ments, a step size of either 20 or 30 μm often is chosen as a
good compromise between fidelity and the time required for
data collection.

Serial grinding commences after all required parameters are set
and the camera focus is verified in Capture One. A typical grind
cycle begins with the removal of surface material (Fig. 6b, i, ii).
First, the grinding wheel is lowered along the Y-axis by the step
size, after which the wheel and coolant feed are activated. Next,
the table begins reciprocating along the Z-axis. Finally, as it con-
tinues to reciprocate, the table is moved along the X-axis so that
the sample passes underneath the spinning wheel, thereby grind-
ing down the surface. Once a pass over the entire surface is com-
pleted, the wheel, coolant, and table movement are stopped.
Optionally, the misting procedure is initiated and the surface is
coated with a thin layer of misting fluid. The retractable roller
then is actuated and the sample passes below the wiper so as to
clear any excess fluid and ensure an even sheen (Fig. 6b, iii).
Finally, the sample is positioned under the imaging stage for pho-
tographing (Fig. 6b, iv).

The grinder then outputs a signal to the PLC, which in turn
tells the control computer to capture an image. The camera and
shutter are triggered via Capture One. Upon completing the expo-
sure, Capture One downloads the image and stores it on the con-
trol computer. As only slight changes are expected between
successive sections, a captured image can be compared to the pre-
vious grind’s photograph to check for major, undesired deviations
in image quality.

A structural similarity algorithm (SSIM) is used for compari-
son and validation. SSIM determines how similar two photo-
graphs (in this case, from the current and previous grind
cycles) are on the basis of the luminance, contrast, and signal
structure of each image (Wang et al., 2004). SSIM produces a sin-
gle number, which then is compared to a threshold value (typi-
cally 0.85, although this value can be adjusted prior to the
grind cycle; Fig. 6a, step 5). If the SSIM value is less than the
threshold value (or if a capture failed to download), the control
computer throws an exception, stops the process, and alerts the
operator via text message (Fig. 6a, 11). Phenomena that can result
in lower-than-threshold SSIM values include, but are not limited
to, changes in lighting (e.g., if one of the LED lamps were to unex-
pectedly shut off), incorrect sample positioning, or issues with the
mechanical grinding process. Once alerted, the operator can

Microscopy and Microanalysis 2027

D
ow

nloaded from
 https://academ

ic.oup.com
/m

am
/article/28/6/2020/6995532 by guest on 09 M

arch 2025



Fig. 6. The grinding procedure. (a) Flowchart depicting each step in the grinding process; steps are numbered on the outside upper left. (b) Diagram illustrating a
single cycle of the grinding procedure. (i) Initial position of the sample. Large arrows indicate the direction of table movement. The dashed lines represent the
silhouette of the vertical rail and attached camera. (ii) Location of the sample upon completion of surface grinding. If desired, the sample can be coated in
mist at this stage of the grind cycle. (iii) Wiping procedure. Large arrow indicates the direction of table movement. (iv) Sample positioned underneath the camera
for imaging. The lighting setup is not illustrated.
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address the problem, manually trigger an image capture, and then
resume the automated grinding process. This procedure ensures
that a valuable sample is not ground away without first creating
a viable image archive. In the case of multiple exposures, the
Matlab program automatically compares each image to its corre-
sponding photograph from the previous grind cycle and tests the
SSIM value against the threshold after every exposure.

If there are no issues with the recorded data, the control com-
puter initiates the next grind cycle by having the PLC input a sig-
nal to the Mitsui MSG-818PC-NC. The grinding process then
repeats itself. A 1,500 slice sample (at 30 μm per slice for a total
thickness of 4.5 cm) takes approximately 5 days to grind and
image; during this time, the operator only needs to replace
machine fluids and clean the roller once every 24 h.

Image Processing Pipeline

Capture One downloads and stores photographs as .IIQs, a pro-
prietary raw image format that preserves unaltered sensor data.
While the raw image data are archived for long-term storage,
they must be converted to 16-bit .TIFFs for use in image process-
ing. Exposure, white balance, contrast, and brightness often are
adjusted before conversion. The conversion from .IIQ to .TIFF
has the downside of increasing image size by an order of magni-
tude. For example, a single .IIQ file that ranges in size from 50 to

80MB may have a corresponding .TIFF file that is approximately
600MB in size. Since individual .TIFFs are so large, it is challeng-
ing to load more than several hundred images into memory.
Therefore, most processing is done on single images or small
groups of images.

Following conversion, one to three representative .TIFFs are
selected for use in training. The purpose of training is to identify
objects of interest so that an algorithm can “learn” how to differ-
entiate between features within each photograph. The GIRI image
processing pipeline utilizes two different neural network architec-
tures for classifying pixels (i.e., semantic segmentation): (a) a hid-
den layer pattern classification network that relies on an initial
oversegmentation using superpixels (clusters of pixels that have
similar color and texture values; Fig. 7a), and (b) a convolutional
neural network (CNN; Fig. 7b) that segments images using a
series of 3D filters. The choice of network is dependent on
what features are being segmented. Generally speaking, samples
with spatially extensive features of interest (e.g., fossils embedded
within a fine matrix) are best for the hidden layer pattern classi-
fication network, while samples with finely detailed, texturally
distinct—although not necessarily chromatically unique—features
(e.g., different mineral phases within a granite) require a CNN.

The training procedure differs based on what neural network
architecture is chosen. For the pattern classification network,
the first step is to produce n superpixels for each training image

Fig. 7. Neural networks used for image classification. (a) Schematic diagram of a hidden layer neural network. The input is a vector of numerical values (such as
mean R, G, and B color values) calculated from a single superpixel. While the number of hidden layers (n layers) can vary, 50 is a typical value. The number of
classes (n classes) is determined by a user prior to training. The output of the network is a list of probabilities—summing to 1—for each class. (b) Schematic dia-
gram of a convolutional neural network. The input is a 33 by 33 pixel neighborhood made up of three (R, G, and B) channels. Following Havaei et al. (2017), the
network takes advantage of two different scales of information by splitting into “global” and “local” pathways, each with a different number and size of convo-
lutions. The two pathways are merged before classification.
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Fig. 8. Image processing procedures. (a) Flowchart illustrating a generalized process for turning raw image data into a 3D model for quantification; steps are num-
bered on the outside upper left. The red diagonal arrows with letters refer to the sub-procedures detailed in b and c. (b) Procedure for generating training data. (c)
Procedure for training a neural network for segmentation. Essential to neural network training is the backpropogation algorithm. Backpropagation updates weights
and biases (which are initialized randomly at the start of training) by first propagating inputs through the network, then computing an error metric, then prop-
agating sensitivities (i.e., calculating the relative contribution of an element to the output) back through the network, and finally, using those sensitivities to update
each element proportionally (Hagan et al., 1996).
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utilizing the SLIC algorithm (Achanta et al., 2012). Then, using a
graphical user interface written in Matlab, a researcher assigns
superpixels to different classes via clicking on individual regions.
Finally, statistics for each class (including mean red, green, and
blue values, covariance between the different channels, and
entropy, which is a measure of texture) are compiled and then
used for network training via backpropagation (Fig. 8, steps 5B–
D). For the CNN, a researcher identifies and paints pixels associ-
ated with specific features in an image editing and/or analysis pro-
gram such as Adobe Photoshop, GIMP, or Dragonfly. Each pixel
within a painted region serves as a representative pixel for that
class. The network training is done in Matlab, once again using
backpropagation (Fig. 8, steps 5B–D).

Following network training, the entire image stack is pro-
cessed, one image at a time, with a forward pass through the
trained neural network of choice. Both a probability map—
which indicates the network’s confidence that a pixel (or super-
pixel) belongs to a given class—for each class and a final classified
.TIFF—which contains a single class value for each pixel—are
output and stored (Figs. 2f and 2g, respectively). The classified
.TIFFs then can be loaded into any 3D visualization software
for measurement and analysis.

Results

Here, we present three case studies, each comprising a real-world
example, a description of the morphological properties of interest,
the results of various 2D and small-volume reconstruction exper-
iments, and, finally, the analysis made with GIRI. Although these
case studies deal with specific geologic materials, the morpholog-
ical properties—along with the experiments—are generalizable,
and applicable to a wide variety of scientific questions.

Shape Metrics of Objects and Porosity Granular Materials

Oolites are sedimentary rocks made up of laminated,
ellipsoidal-to-spherical calcium carbonate grains known as
ooids, which typically have diameters of less than 0.5 mm
(although anomalously large “giant ooids” can grow to be over

2 mm in diameter). Oolites can serve as paleoenvironmental
indicators (Bathurst, 1972; Howes et al., 2021) and hydrocarbon
reservoir rocks (Lucia, 1995). The fluid storage capacity of an
oolite is controlled by its porosity (i.e., the volume of void
space divided by the total volume of a sample) and permeability.
These parameters, which effectively describe the void spaces of a
sample, are dependent upon the shape, size, and distribution of
the solid fraction of a volume. In oolites, porosity and perme-
ability can vary both spatially and temporally: hydrodynamic
and biological forces can lead to local heterogeneities within
the rock (e.g., grains sorted by wave action or burrows made
by animals) while, over time, the precipitation of new calcium
carbonate cements and/or the dissolution of existing grains
and cements can change void spaces and interconnectivity. To
accurately estimate porosity and permeability values, it is neces-
sary to identify and segment both the grains and the multiple
generations of cement that make up an aggregate. Once isolated,
spatial statistics of the original grains can help constrain paleo-
environment, while morphological descriptions of both the
cements and void spaces can aid estimates of the evolution of
paleo-fluid migration and storage.

Small volume (e.g., millimeter scale) reconstructions can lead
to inaccurate estimates of both porosity and permeability. For
example, in the case of a Holocene oolite from Joulters’ Cay,
Andros Island (Figs. 9a, 9b), porosity values measured from a 1
mm3 subvolume of the oolite can vary by up to 23%; this variation
drops to 4.7% when examining 0.343 cm3 volumes (Fig. 9c).
Estimates of absolute permeability, calculated using OpenPNM
(Gostick et al., 2016), span five orders of magnitude when looking
at 1 mm3 subvolumes of the oolite (25th/50th/75th percentiles of
100 randomly drawn volumes: 714.5/2110.4/4411.2 mD; Fig. 9d).
This variation is reduced with larger (i.e., 0.343 cm3) volumes,
where the estimated permeability (25th/50th/75th percentiles of
100 randomly drawn volumes: 108.0/310.0/659.8.2 mD) is consis-
tent with values reported for reservoir rocks (Bear, 1988).
Estimates of permeability and porosity made on small volumes
will be especially bad for granular materials with very large grains.
In the case of an Early Triassic oolite from the Great Bank of
Guizhou in South China (Howes et al., 2021), which contains

Fig. 9. Oolite case study. (a) Slice through an oolite from Joulters’ Cay, Andros Island, the Bahamas. Ooids are white. The blue color is a result of epoxy impreg-
nation, which is necessary because the sample is weakly cemented. Inset: a thin section image of the same oolite, illustrating the ooids, cements, and pores that
make up the sample. (b) Three-dimensional reconstruction of the sample shown in a. (c) Porosity (volume of void over total volume; in percent) as measured on
random subvolumes of the reconstruction shown in b. Three different sizes of subvolumes are used; as volume increases, the variability decreases. The porosity
value for the entire volume shown in b is marked by the red dashed line. (d) A plot depicting permeability (in mD) values measured on random subvolumes of the
reconstruction shown in b. Permeability values were calculated using OpenPNM (Gostick et al., 2016). The calculated permeability value for the volume shown in b
is depicted by the red dashed line. Scalebars in a and b depict 0.5 cm.
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so-called giant ooids, the median maximum Feret diameter of
individual ooids is 4.4 mm (25th/75th percentiles: 3.7/5.5 mm).
Therefore, a 1 mm3 volume would be too small to image a single
ooid, precluding any accurate estimate of porosity or permeability.

It is important to note that, due to a clear density contrast
between solid and void space, modern oolites are excellent candi-
dates for reconstruction via X-ray CT. However, even young rocks
contain some amount of secondary cementation, which—owing
to similar mineralogical and chemical properties between grains
and cements (Fig. 9a)—may not be differentiated via X-ray CT,
leading to measurement error. This problem only is compounded
as primary void spaces are, over time, progressively filled with
cement and/or sediment. Additionally, X-ray CT cannot distin-
guish between different growth rings in individual ooids (again,
because there is no phase or density difference), which is an inte-
gral aspect of piecing together paleoenvironments (Howes et al.,
2021) or changes in primary and secondary porosity and/or per-
meability. For such applications, reconstructions based on optical
imagery (acquired via serial grinding and imaging) are required.

Modal Makeup of Irregularly Shaped, Interlocking Crystals

We now turn to materials made up of interlocking crystals, where
there is a need to better understand the size, shape, and concen-
tration of each crystal. To date, complete and accurate morpho-
logical descriptions of crystals within granites (or other igneous
rocks), which are required to produce and evaluate true crystal
size distributions (CSDs), remain elusive. Often, CSDs are made
using stereological corrections, which rely on a set of geometric
assumptions (such as modeling minerals and bubbles as spheres;
Armienti, 2008). Complementary to CSDs are modal analyses,
which provide an accounting of the proportions of different min-
erals within a rock. Such analyses are accomplished by using
either point counting (Neilson & Brockman, 1977) on 2D thin
sections or model estimates from whole rock geochemistry.
Serial sectioning opens up the possibility of making 3D CSD
and modal analyses. However, when individual crystals are milli-
meter scale, large volumes are required to produce reliable esti-
mates of either CSD or modal mineralogy. For instance, when
calculating the relative proportions of four different mineral

Fig. 10. Granite case study. (a) Diagram illustrating three subvolume sizes: 1 mm3, 125 mm3, and 1 cm3. (b) Evolution of modal mineralogy as a progressively larger
subvolume (growing from the center of the granite volume shown in a and f) is measured. Black arrows on the right of the figure depict the modal mineralogy for
the entire volume. Estimates of modal mineralogy from mm3 volumes of crystalline rocks can be inaccurate. (c) Histograms showing that errors in estimates of
modal proportion may persist even as increasing numbers of successive subvolumes are averaged together. For each size shown in a, 1, 2, and 5 samples are
repeatedly (100 times) extracted and an average proportion for each phase is calculated. These averaged values then are subtracted from the true, known values,
and the resulting error values are plotted as histograms. While taking a large number of subvolumes does lead to a smaller range of error, accuracy is predom-
inantly controlled by volume size. (e) Slice through a granite from the Golden Horn Pluton. (f) Classified 3D granite volume. (g) Ternary showing the relative pro-
portions of albite, orthoclase, and quartz. In order to plot the three phases shown in the ternary, the plagioclase volume is split into albite and anorthite using
whole rock measurements of calcium to calculate the relative proportion of each phase. Inset left, graph illustrating how the mean relative proportions varies as
each slice is measured, suggesting that there is a minimum volume that must be measured before acceptable results are attained. Inset right, box plot showing the
wide range of relative proportions measured on each (individual) slice of the granite. Scalebars in e and f depict 0.5 cm.
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phases within a granite, values do not converge in volumes
smaller than 1 cm3 (Figs. 10a, 10b). Estimates of modal mineral-
ogy can be up to 20% wrong even when averaging over multiple
cm3 volumes (Fig. 10c).

The Eocene Golden Horn batholith in the North Cascades,
Washington is a fossilized magma chamber in which hypotheses
of high silica melt formation can be tested using 3D models made
with GIRI. Granites from the Golden Horn can be segmented into
four mineral phases: plagioclase, potassium feldspar, quartz, and
“mafics” (an all-encompassing designation that incorporates bio-
tite and hornblende, among other dark minerals). Modal analyses,
calculated as a first step toward producing true 3D CSD of gran-
ites, reveal that the proportions of albite, orthoclase, and quartz
(normalized to the sum of their volumes) are 45, 25, and 30%,
respectively (Figs. 10e–10g). These values are comparable to
modal values derived from large volume (0.3 m3) whole rock geo-
chemical analyses. As the latter are model estimates—made with
computed mineralogy (i.e., using the CIPW norm, which calcu-
lates the mineralogy of anhydrous magmas, to arrive at a final
mineral composition, e.g., Kelsey, 1965) and projection schemes
with empirical corrections (Blundy & Cashman, 2001)—an
exact match should not be expected. Our reconstruction can be

used to produce true 3D CSD, which then can be compared to
other granite samples from the Golden Horn batholith. The pres-
ence or absence of size and/or geochemical trends within the
resulting dataset can reveal whether settling and/or compaction
occurred within the system, constraining how magma bodies
(such as those under Yellowstone National Park) form and evolve.

Angles and Geometry of Pseudomorphs

Minerals are made up of repeating atom-scale lattices that impart
specific symmetries, morphologies, and patterns of fracture to
crystal forms. With pseudomorphs—crystals that retain the orig-
inal shape, but not the chemistry or structure, of a mineral—the
size of interfacial angles and description of axes of symmetry
can be used to identify the precursor mineral. The correct identi-
fication of a pseudomorph can provide insight into the environ-
mental conditions that existed at the time of crystalization. For
example, cherts from the Barberton Greenstone Belt contain a
pseduomorph that is purported to be after gypsum. It is proposed
that the gypsum crystals formed within deep water sediments (de
Wit & Furnes, 2016). Pointing to the fact that, in the modern, the
arrival of cold bottom waters to continental shelves in the North

Fig. 11. Pseudomorphs case study. (a) A hexagonal volume with four random cross sections. (b) The cross sections shown in a with their respective number of sides
(top text), axes of symmetry (black dashed lines), and rotational symmetry specification (bottom text) notated. Note how it is possible to produce a hexagonal cross
section with no axes of symmetry. (c) Histogram showing the angles measured on 9,181 cross sections through the hexagonal volume. Colors correspond to the
number of sides in each cross section. The inset pie chart illustrates how often a shape with n sides appeared. The colored vertical lines show the expected angle
value for a regular polygon with n sides. (d) Slice through a pseudomorph-bearing sample from the Barberton Greenstone Belt. (e) Model of a single, seemingly
hexagonal crystal, with oriented cross sections in red. (f) Model of a single crystal that exhibits twinning. (g) Top, a single section through the crystal shown in e.
Internal angles demonstrate that the section is not a regular hexagon. A 180° rotation is shown in dashed lines, illustrating that the section has twofold symmetry.
No mirror planes can be identified. Bottom, three sections, ordered from top to bottom, through the crystal shown in f. The formation of twins can be seen in the
second and third cross sections. The dotted line depicts the twin plane. Scalebars in d, e, and f depict 0.5 cm.
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and South Atlantic result in gypsum crystal growth, researchers
have used the presence of the pseudomorphs after gypsum to
argue that Archaen ocean waters must have been cold (de Wit
& Furnes, 2016). Such cold waters would suggest that Earth had
a cool climate 3.4 billion years ago. This hypothesis is controver-
sial, as studies of oxygen and silicon isotopes have inferred that
Earth’s surface and oceans were extremely hot (e.g., 60–80°C) at
the time (Knauth & Lowe, 2003; Robert & Chaussidon, 2006).

When studying pseudomorphs, 2D cross-sections may not
preserve the correct number of sides of a crystal or the true angles
between those sides, leading to an incorrect determination of
symmetry as well as crystal habit (Figs. 11a–11c). For example,
out of 9,181 random 2D slices through a hexagonal crystal with
sixfold symmetry, only 59% of the cross-sections exhibit six
sides. Additionally, not every six-sided cross section is a regular
hexagon (i.e., each internal angle measuring 120° and the sum
of angles being 720°; Fig. 11c), thereby precluding an accurate
reconstruction of symmetry, and, in turn, the original form.

3D models of pseudomorphs (Figs. 11d–11g) reveal that cross
sections—made perpendicular to the long axes of the crystals—
have six sides. These hexagonal cross sections are not regular,
lack clear mirror planes, and exhibit a twofold symmetry
(Fig. 11g). By themselves, the cross sections are not diagnostic
of any one mineral (e.g., both aragonite and gypsum exhibit sim-
ilar pseudohexagonal forms). However, the reconstruction of a
macroscopic centimeter-scale twinned crystal, with swallowtail
twins on the 001 plane (Figs. 11f, 11g, bottom; Hurlbut and
Klein, 1977), suggests that the pseudomorphs are, in fact, after
gypsum.

3D Reconstructions of Large Volumes Both Extend and
Complement Existing Analytical Methods

Automated mechanical serial sectioning is a well-established tech-
nique for generating 3D reconstructions of objects with low mate-
rial contrast. GIRI extends the maximum volume (from 27 cm3 to
an upper limit of 11,000 cm3) that can be imaged using mechan-
ical serial sectioning (and does so while maintaining image qual-
ity, repeatability, and time efficiency). This extension is important
because, as our case studies demonstrate, cm3-scale 3D recon-
structions can provide critical information that might be missed
by 2D or mm3 analyses of materials ranging from granular
media to individual, macroscopic objects such as crystals. GIRI’s
large volume capabilities complement other tomographic tech-
niques, which might present certain advantages, such as higher
resolution (e.g., RoboMet.3D or FIB Tomo, Fig. 1), in situ obser-
vation (e.g., 4D X-ray CT, where the same volume is imaged over
the course of an experiment), or nondestructive data collection
(e.g., ultrasound or X-ray CT).

Concluding Remarks

The case studies in this paper provide only a limited illustration of
GIRI’s reconstruction capabilities. Our serial grinding and imag-
ing technique can address questions in many different disciplines,
from geology to material sciences to manufacturing. GIRI is of
particular value to the analysis of heterogeneous phenomena,
such as fracture networks, size or shape sorting, and permeability,
whose properties might greatly vary over small (e.g., mm to cm)
distances and which therefore can benefit from the large sample
volumes that GIRI can image. Importantly, GIRI is an adaptable
and extensible platform that, in the future, could see the addition

of a variety of data capture technologies (e.g., Raman, XRF, and/or
enhanced multispectral imaging) as required by researchers.
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